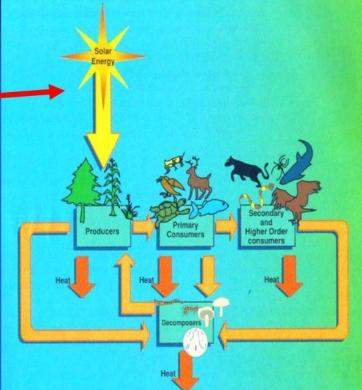
1.3 Energy & Equilibrium IB ESS Read pages 27 - 40

Learning Objectives

- Outline the laws of thermodynamics
- Explain how laws of thermodynamics relate to environment systems and govern flow of energy in a system
- Describe how a system can exist in alternative states of equilibrium
- Describe how positive destabilizing feedback mechanisms can drive a system to a tipping point
- Describe how negative feedback can stabilize a system

First Law of Thermodynamics


- Energy cannot be created nor destroyed, only converted from one form to another
- Energy exists in many forms
 - Light, heat, chemical, electrical, sound & kinetic
 - In LIVING systems:
 - HEAT cannot be converted to other forms
 - No new energy is created....but input energy is converted from one form to another
 - Total amount of energy ecosystems DOES NOT CHANGE
 - Amount available to living things gradually reduces
 - Energy is used for growth, movement, reproduction & other processes
 - Energy transfer & transformations are not efficient in living systems
 - Ex. less than 10% usable energy is passed from one organism to the next in a food chain

First Law of Thermodynamics

ENERGY ENTERS ECOSYTEM

 All energy in ecosystem comes from the sun

 First law of Thermodynamics: Energy cannot be created or destroyed (but it can be transformed into stored energy & heat)

Second Law of Thermodynamics

- In isolated systems, <u>entropy (disorder) tends to increase with time</u> because the system becomes disorganized
- Entropy, in terms of evenness of energy distribution in a system
 - Energy used to create order & hold molecules together
 - Entropy increases if less energy is available
 - Entropy increases → energy & matter change from concentrated to more dispersed
 - Availability of energy to carry out processes lessens
- Most concentrated form of energy = sun
- Most dispersed form of energy = heat
- Living systems require constant input of energy (sun) to replenish what is lost as heat in order to maintain order & structure

Second Law of Thermodynamics

<u>Equilibrium</u>

- State of balance that exists between the different parts of any system
 - Natural systems are open & in a steady-state equilibrium
 - <u>Steady-state equilibrium</u> (dynamic equilibrium) a stable form of equilibrium that <u>allows a system to return to its steady state after a</u> <u>disturbance</u> (EX. homeostasis)
 - Example:
 - Regulation of body temperature in mammals (sweating & shivering)
 - Population of animals that remains the same size (birth & death)
 - Woodland recovers after heavy rainfall
 - Forest re-grows fallen trees

"The more things change, the more they stay the same"

Static equilibrium

- NOT living.
- Remain unchanged for long periods of time
- Example:
 - Rock formation, bottle sitting on a table

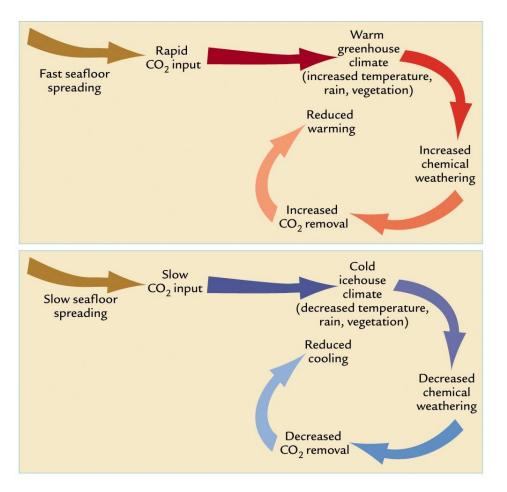
Stable equilibrium

- System tends to return to the same equilibrium after a disturbance
 - Swinging pendulum
 - Natural, open ecosystems
 - May be <u>steady-state equilibrium</u> (climax community) OR <u>developing steady-state</u> <u>equilibrium</u> (develops over time, like a changing ecosystem or succession)

2005 Reeves Prescribed Burn

2006 Reeves Spring Results

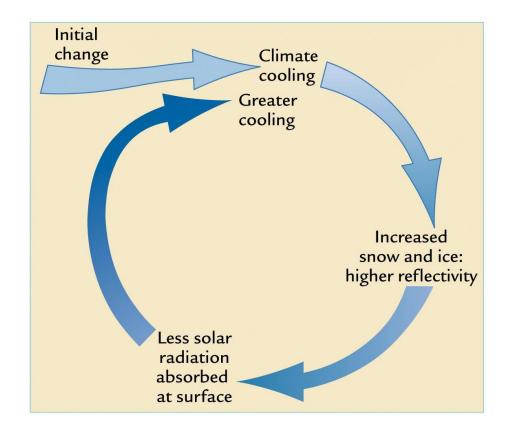
Unstable Equilibrium


- A new equilibrium is formed after the disturbance
 - A ruler balanced vertically on a finger (if disturbed it will fall & continue to fall until it hits the ground, creating a new & different equilibrium)

August 16, 2009 June 28, 1975

Rainforest area in Brazil Transformed into farms

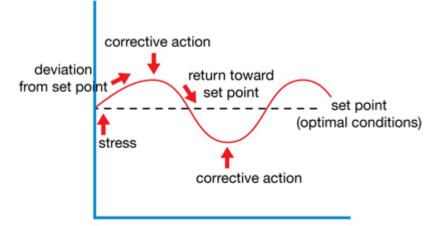
Feedback systems


- Return of part of the output from a system as input, so as to affect succeeding outputs
- Information (from inside or outside the system) starts a reaction that affects the processes of the system
 - Changes in these processes lead to changes in the output...in turn affect (feed back to) the level of input
 - Change a system to a new state (positive) or maintain a system at a steady state (negative)

Positive Feedback

- Destabilizing
- Allows a system to change rapidly
- Leads to more & greater change
- Leads to exponential deviation away from an equilibrium (upward or downward, but not both)
 - must eventually come to an end
 - Resources allowing rapid change will come to an end
 - Leads to a vicious cycle of events

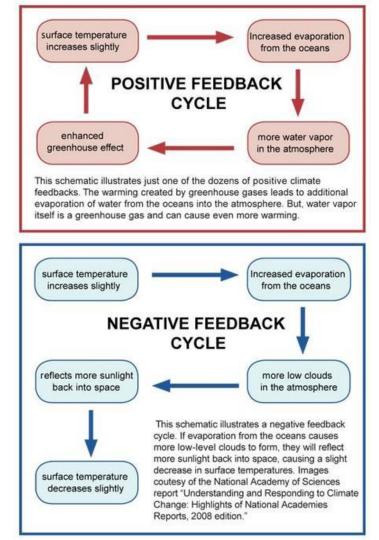
Can you think of an example the model represents?



Negative Feedback

- Dampen down or counteract any deviation from an equilibrium
- Promotes stability...steady-state equilibrium
- Allows system to regulate itself
- Stabilizes system to eliminate any stray from the preferred conditions
 - Examples: governor on a steam engine, thermostat, homeostasis in your body, predator-prey population regulation
 - Maintenance of a steady-state equilibrium relies on negative feedbacks
 - \circ Body regulation of temp, blood sugar
 - \circ $\;$ Sustainable numbers of individuals of a species in an ecosystem
 - CO2 levels & plants

Negative Feedback


Regulation Through Negative Feedback

Stress or disturbance changes the internal environment. Change is detected by receptors.

Corrective measures are activated.

Corrective measures counteract the change back toward set point.

Resilience

- Of a system is the tendency of a system to <u>maintain stability</u> and resist tipping points.

<u>Tipping point</u>- minimum amount of change within a system that will destabilize it & cause it to reach a new equilibrium or stable state

- What can test this? (push to tipping point)
 - Exponential growth of a population (invasive species like water hyacinths or humans)
 - Exponential growth in our use of natural resources
 - Exponential growth in production of pollution
- How can tipping points be avoided?
 - <u>Diversity present in system (wide diversity BEST)</u>
 - <u>Size of storages</u> in system (large storages BEST)

Human society can negatively impact resilience of systems

- <u>Reducing diversity</u>...
 - Growing monoculture crops (fewer species)
 - Unable to resist change like drought or pests
 - Replacing ecosystems with development
- <u>Reducing storages...</u>
 - Example excessive removal of trees or overfishing the ocean
 - Unable to recover

New equilibrium (without the overexploited resource) results