
3.4 Conservation of biodiversity

Learning Objectives:

- Describe how arguments about conservation can be based on aesthetic, ecological, ethical or economic grounds
- Explain the criteria used to manage protected areas
- Describe how the loss of biodiversity increases conservation efforts
- Understand how local community support is vital to the success of conservation efforts
- Explain various approaches to conservation and evaluate their strengths and weaknesses

KEY QUESTIONS:

1. How does the loss of biodiversity drive conservation efforts?

- 2. How is a society's environmental value system (EVS) linked to arguments about conservation?
- 3. What are the strengths and weaknesses of different approaches to the conservation of biodiversity?

Arguments for preserving species & habitats

- Economic arguments cite the valuation of ecotourism, genetic resources & natural capital
- Ecological arguments center on preservation of ecosystem
- Ethical arguments include intrinsic value of species

'Direct value' - easier to measure, calculated in terms of economics

'<u>Indirect value'</u> - assessed in terms of the 'services' that an ecosystem provides for local or global community

Include scientific & educational value, potential source of medical products,
 value to world climate & weather patterns

Values of biodiversity that can be measured directly

- Direct Value from food from plant & animal sources
 - Common food plants like rice & maize...farmed animals like sheep & cattle
 - Important to maintain gene pool of these species so sufficient diversity available if changes occur in future
 - EX. older or wild varieties of plants may have genes that can be introduced or reintroduced into domesticated strains to promote resistance to a pest
 - Rare or traditional breeds of animal retain genes that offer protection against new diseases, which modern varieties have lost

Values of biodiversity that can be measured directly

Bananas

- All cultivated bananas produced from 1 original variety
- Clones produced asexually, genetically identical
- Cannot evolve resistance to disease
- Agriculture research organization in Honduras
 - Cross-breeding cultivated bananas with wild ones
 - Create new varieties that are resistant to Panama disease
 - Potential to wipe out worldwide banana crop

Values of biodiversity that can be measured directly

- Timber & pharmaceuticals obtained from plant & animals
 - Digoxin from digitalis
 - Aspirin from chemically synthesized salicylic acid in white willow bark
 - Morphine and other opiates from opium poppy
 - Rubber, palm oil & cotton from other plants
 - Silk, honey, milk, meat & fish from animals

Indirect Value

- Impossible to quantify...
 - Aesthetic value of unspoilt ecosystem
 - Pleasure provided for recreation & tourism
 - Educational value of an ecosystem with natural biodiversity
- Ecosystem productivity not just just a measure of biomass
 - Also includes factors vital to system function & to function of other systems
 - Plants remove carbon dioxide from air & release oxygen (environmental stability)
 - Climate regulated by rainforests
 - Decomposers essential to recycling waste to provide nutrients
 - Insects & other pollinators needed by crop plants
 - Animals disperse plant seeds
 - Preservation of biodiversity keeps natural systems stable & balanced
 - Stable systems less likely to be disturbed by external factors (disease or abiotic events)

- <u>Indicator species</u> organisms which have different tolerances to pollutants or changes in other factors
 - Can show changes occurring in an ecosystem long before the change has become measurable
 - EX. lichens = key indicator species of changes in the atmosphere
 - Unable to survive if small increase in sulfur dioxide in air...death = poor air quality

Genetic diversity

- Preserved in complex ecosystems...hard to quantify
- Larger gene pool important in enabling pop to adapt to changes in environment
- Wild varieties are source of new genes for cultivated plants & domesticated animals

Human rights & ethical considerations

- o 50 million of the world's 300 million or more indigenous people live in rainforests
- Modern philosophies accept that, as well as humans, EVERY species has a right to exist
- Important for people to accept their responsibility to preserve biodiversity for sake of all species

Intergovernmental & non-governmental conservation organizations

- Key objective = preserve species & their habitats throughout the world
 - Global or local
 - Categorized by the way they are set up & funded
 - IGOs intergovernmental organizations
 - Governmental organizations groups that follow the policies of one or more governments and are funded by them
 - Non-governmental organizations (NGOs) groups funded by individuals or independent groups
 - Effectiveness varies due to different strategies adopted in their work

Pages 186-187	Government organization (i.e. UNEP)	Non-governmental organization (NGO) (i.e. WWF)
Use of media	 Professionals produce statements Good communication with media outlets 	 Use internet & social media, advertisements, membership drives & direct action for communication & publicity May produce press packs, flyers & web links
Speed of response	 Slow & bureaucraticoften many countries involved in negotiations Each country has its own view or legal position 	Generally fasterNGOs are independent & able to make decisions quickly
Diplomatic constraints	 Often held back by political arguments between different countries Must respect legal requirements of each nation 	Not affected by diplomatic constraints
Political influence	Has direct links to governments of many countries	Influence is indirect & depends on lobbying & pressure groups & public protests
Legal powers	Can pass laws on environmental issues	Public opinion & pressure used rather than legal powers

United Nations Environment Program (UNEP)

- Governmental organization that coordinates with UN work on the environment and helps LEDCs implement environmentally sound policies
- Founded in 1972, headquarters in Kenya
- Objectives:
 - Provide leadership and encourage partnership in caring for the environment by inspiring, informing, & enabling nations and peoples to improve their quality of life without compromising that of future generations
- Gathers, collates & verifies data on biodiversity & ecosystems from many sources
 - Can be used as a reliable source of information.
- Promotes global & regional cooperation & develops environmental laws
 - Covers range of issues like atmosphere, marine & terrestrial ecosystems & the green economy
- Works with NGOs to implement its policies

World Wildlife Fund (WWF)

- An NGO & best known international conservation organization
- 1961...works with businesses, governments & local communities around the world
- Focuses on safeguarding wildlife & places it considers to be of global importance
- Lobbies governments & runs campaigns to change legislature & policy to protect environment & biodiversity
- Major campaigns: climate change, energy, housing & protection of marine environment

Important international conventions on biodiversity

- Meetings, conventions & global summits
 - Raise profile of conservation
 - Some produce legally binding agreements
 - Some pressure governments to act on conservation issues (publicity & public opinion)
- Encourage collaboration between nations
- Key dates & meetings:
 - 1948 IUCN founded
 - 1961 WWF set up
 - 1966 Red Data Book published
 - 1973 First Convention on the International Trade of Endangered Species of Wild Fauna & Flora (CITES convention) held
 - 1980 World Conservation Strategy announced highlighting need to preserve genetic diversity & ensure sustainable use of species & ecosystems
 - 1982 UN World Charter for Nature agreed
 - o 1991 IUCN Caring for the Earth conference

Important international conventions on biodiversity

Key dates & meetings:

- 1992 United Nations Conference on Environment and Development (UNCED) the Earth Summit, in Rio de Janeiro
- 2000 UN Millennium Summit
- 2002 UN World Summit on Sustainable Development
- 2005 UN World Summit, New York
- o 2012 UN Earth Summit Rio +20

Approaches to conservation

- <u>3 approaches</u> of a program of conservation of a species
 - Conservation of a <u>habitat</u> so that species can survive
 - Conservation based on protection of a <u>species</u>
 - Combined approach to conserve both habitat & species within it

Criteria used to design areas of protected habitat

- Shape, size & interconnection between protected areas

Size

- Larger is better...can support more species and a greater diversity...more complex interactions
- Small supports small pop #s...inbreeding risk...genetic diversity diminished
 - Risk of a natural disaster (i.e. flood or forest fire) wiping out all individuals
 - Edge effect significant in small areas

Edge effect

- Center of nature preserve more likely to have different features from areas around edges
- EX. woodland has more light & wind but less moisture at the edge
- Organisms at center protected better from influence of other organisms (farm animals or humans just outside reserve)
- Organisms at edge disturbed or competing with organisms outside reserve
- Size matters
 - Edge effect greater in small reserves (more edge per hectare than large ones)
- Shape is a factor
 - Long, thin reserves have larger edge than round or oval shape covering same area

Criteria used to design areas of protected habitat

Wildlife corridors

- corridor strip of land used to link 2 or more separated reserves
- Can be under busy roads or railways
- Not ideal
 - Animals using it exposed to dangers
 - Can come closer contact with humans
 - Can act as conduits for spread of disease
 - May make certain species easy targets for poachers or hunters
- Benefits
 - Gene flow between otherwise isolated areas...promote diversity
 - Seasonal movements (even large migrations) can happen safely
 - Less chance animals will be killed by traffic once they are accustomed to using it

Buffer zones

- Semi-protected areas surrounding a nature reserve
- Managed or left wild, but outside influences are minimized (people in nearby towns or impact of local agriculture)
- Limits the spread of pests & disease into reserve

Criteria used to design areas of protected habitat

Management

- Usually by government or government-funded organizations
- Without active management...some species can dominate & threaten survival of other important organisms
- Should allow for scientific study & education
 - Allow visitors in manageable #s

Species-based conservation strategies

Focus on individual species or groups of species & aim to protect them & increase their #s

Role of CITES

- an international agreement that aims to limit international trade in wild plants & animals & their body parts so trade in specimens does not endanger the survival of a species
- Came into force in 1975...membership voluntary
 - Member governments produce own national laws to support
- Species grouped according to degree of threat they face
 - If threatened with extinction, no trade at all
 - Less threatened, traded within regulations to make sustainable
 - Species included at request of specific country due to cooperation needed to prevent illegal trade
- Species listed:
 - All primates, cetaceans (whales & dolphins), turtles & tortoises & plants like orchids & mahogany
 - importing/exporting specimens, body parts or derivatives of the species must be authorized & licensed

Species-based conservation strategies

CITES

- Strengths:
 - Trade in endangered plants & animals significantly reduced
 - Permits & licenses required to trade in listed species
 - Raised awareness of trade in endangered species
- Weaknesses:
 - Voluntary & countries can withdraw
 - Penalties may be less than the profit being made from trading or smuggling
 - Some countries unable to enforce the laws effectively (lack of resources, long unmanned borders or corruption among politicians or law enforcement agencies)

Species-based conservation strategies

Captive breeding programs, reintroduction programs & zoos

- Zoos most actively involved in captive breeding & conservation programs aiming to increase
 #s of endangered animals & work to reintroduce them into their native habitats
 - Best hope of saving species severely endangered
 - Provide location for <u>ex-situ conservation</u> preserving species whose #s are very low, by selective breeding animals outside natural habitat
 - Difficult
 - Behave differently in zoos
 - Breeding can be problematic (especially if complex breeding behaviors or require special environmental conditions)
 - Artificial insemination or embryo transfer can be used

But awesome

- Use science to select based on genetic profiles (large gene pool maintained
 as much diversity as possible)
- Keep pedigrees...those with greatest variation selected & exchanged with other zoos
- Difficult pregnancies monitored & young cared for after born

Species - based conservation strategies

PLANTS

- More straightforward to maintain
- Botanic gardens supply correct environmental conditions
- Computer-controlled greenhouses maintain correct temp & humidity needed
- Many countries keep national collections of native plants, exotic genera & food plants
- Seed banks (store seeds in cool, dark conditions to prevent germination)
 - EX. Millennium Seed Bank (Wakehurst Place in England) & Svalbard Seed Bank (Norway)

Reintroducing species into the wild

- Not easy
- Habitat loss may prevent ability to live
- Released animals may not have behaviors needed to survive
 - Humans may need to intervene (feed or protect them)
 - EX. young orangutans have to be taught to socialize, climb & forage for themselves before they can become fully independent
- EX of success:
 - Arabian oryx in Oman & Saudi Arabia
 - Condor in USA
 - o Przewalski's horse in Mongolia
 - Golden lion in Brazil

Strengths of captive-breeding & reintroduction programs:

- # of rare species can be increased to boost #s in the wild
- Genetic diversity can be maintained by selective breeding
- Artificial insemination or embryo transfer can help when animals fail to breed naturally
- Offspring may have better chance of survival
- Zoos have valuable role in education & public awareness
- Plants species can be held in seed banks for many years & provide source of genetic variability

Weaknesses of captive-breeding & reintroduction programs:

- Captive breeding programs are expensive
- Reintroduction of species is difficult & poorly supported programs may leave vulnerable animals at risk
- Reintroduced species may be targeted by hunters or poachers if local people do not support the program
- Ethical issues need to be considered (ex. Should humans interfere with nature & keep animals in zoos?)

Selection of 'charismatic' species to help protect others in an area

- Should endangered animals be given priority over other species? What basis should one species be chosen over another?
- Zoos select animals likely to increase visitor #s & provide financial support
 - Decisions may be made for aesthetic or economic reasons (rather than ecological ones)
 - Primates & rhinos attract visitors more than beetles or worms
 - Different zoos have different levels of experience & expertise...tend to develop species they know best

Choosing species for...

- Aesthetic reasons can:
 - Raise public awareness
 - Increase funding & support
 - Engage local populations (who may benefit from increased tourism)
 - Be important in preserving overall beauty of an area
- Ecological reasons can:
 - Be more likely to benefit the whole ecosystem
 - Fail due to lack of support & funding
 - Result in species which the public consider unattractive being conserved

Keystone species

- One that has a disproportionate effect on the structure of a community
 - Include specific predators or grazers
 - EX. limpets on a rocky shore (they control level of algae as they graze)
 - EX. lobsters (when fishermen remove too many from Atlantic ocean, sea urchin populations increase and lead to destruction of large areas of kelp....complex communities of molluscs & other small organisms are then destroyed
 - EX. grey wolf (see side margin pg 155)
 - Diversity of species & complexity of food webs reduced if keystone species in decline

Evaluating the success of a protected area

- No guarantee a project will be successful...it needs:
 - Governmental support
 - Adequate funding
 - Research & education programs
 - Support of local community
 - Important that needs of local people are met as part of the project
 - Location (must be situated in regions suitable distance from urban centers...surrounding land can act as a barrier to human interference)
 - But close enough to allow access for local people & tourists (if tourism is used for funding project)